Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(9): e10481, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37711498

RESUMO

Fruit bats serve as crucial bioindicators, seed dispersers, pollinators, and contributors to food security within ecosystems. However, their population and distribution were threatened by climate change and anthropogenic pressures. Understanding the impacts of these pressures through mapping distribution and habitat suitability is crucial for identifying high-priority areas and implementing effective conservation and management plans. We predicted the distribution and extent of habitat suitability for Rousettus aegyptiacus and Epomophorus labiatus under climate change scenarios using average predictions from four different algorithms to produce an ensemble model. Seasonal precipitation, population index, land-use land cover, vegetation, and the mean temperature of the driest quarter majorly contributed to the predicted habitat suitability for both species. The current predicted sizes of suitable habitats for R. aegyptiacus and E. labiatus were varied, on average 60,271.4 and 85,176.1 km2, respectively. The change in species range size for R. aegyptiacus showed gains in suitable areas of 24.4% and 22.8% in 2050 and 2070, respectively. However, for E. labiatus, suitable areas decreased by 0.95% and 2% in 2050 and 2070, respectively. The range size change of suitable areas between 2050 and 2070 for R. aegyptiacus and E. labiatus shows losses of 1.5% and 1.2%, respectively. The predicted maps indicate that the midlands and highlands of southern and eastern Ethiopia harbor highly suitable areas for both species. In contrast, the areas in the northern and central highlands are fragmented. The current model findings show that climate change and anthropogenic pressures have notable impacts on the geographic ranges of two species. Moreover, the predicted suitable habitats for both species are found both within and outside of their historical ranges, which has important implications for conservation efforts. Our ensemble predictions are vital for identifying high-priority areas for fruit bat species conservation efforts and management to mitigate climate change and anthropogenic pressures.

2.
Evol Appl ; 14(3): 794-806, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33767753

RESUMO

While climate change is recognized as a major future threat to biodiversity, most species are currently threatened by extensive human-induced habitat loss, fragmentation and degradation. Tropical high-altitude alpine and montane forest ecosystems and their biodiversity are particularly sensitive to temperature increases under climate change, but they are also subject to accelerated pressures from land conversion and degradation due to a growing human population. We studied the combined effects of anthropogenic land-use change, past and future climate changes and mountain range isolation on the endemic Ethiopian Highlands long-eared bat, Plecotus balensis, an understudied bat that is restricted to the remnant natural high-altitude Afroalpine and Afromontane habitats. We integrated ecological niche modelling, landscape genetics and model-based inference to assess the genetic, geographic and demographic impacts of past and recent environmental changes. We show that mountain range isolation and historic climates shaped population structure and patterns of genetic variation, but recent anthropogenic land-use change and habitat degradation are associated with a severe population decline and loss of genetic diversity. Models predict that the suitable niche of this bat has been progressively shrinking since the last glaciation period. This study highlights threats to Afroalpine and Afromontane biodiversity, squeezed to higher altitudes under climate change while losing genetic diversity and suffering population declines due to anthropogenic land-use change. We conclude that the conservation of tropical montane biodiversity requires a holistic approach, using genetic, ecological and geographic information to understand the effects of environmental changes across temporal scales and simultaneously addressing the impacts of multiple threats.

3.
R Soc Open Sci ; 6(9): 190772, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31598305

RESUMO

African wolves (AWs) are sympatric with endangered Ethiopian wolves (EWs) in parts of their range. Scat analyses have suggested a dietary overlap between AWs and EWs, raising the potential for exploitative competition, and a possible conservation threat to EWs. However, in contrast to that of the well-studied EW, the foraging ecology of AWs remains poorly characterized. Accordingly, we studied the foraging ecology of radio-collared AWs (n = 11 individuals) at two localities with varying levels of anthropogenic disturbance in the Ethiopian Highlands, the Guassa-Menz Community Conservation Area (GMCCA) and Borena-Saynt National Park (BSNP), accumulating 845 h of focal observation across 2952 feeding events. We also monitored rodent abundance and rodent trapping activity by local farmers who experience conflict with AWs. The AW diet consisted largely of rodents (22.0%), insects (24.8%), and goats and sheep (24.3%). Of the total rodents captured by farmers using local traps during peak barley production (July to November) in GMCCA, averaging 24.7 ± 8.5 rodents/hectare/day, 81% (N = 3009) were scavenged by AWs. Further, of all the rodents consumed by AWs, most (74%) were carcasses. These results reveal complex interactions between AWs and local farmers, and highlight the scavenging niche occupied by AWs in anthropogenically altered landscapes in contrast to the active hunting exhibited by EWs in more intact habitats. While AWs cause economic damage to local farmers through livestock predation, they appear to play an important role in scavenging pest rodents among farmlands, a pattern of behaviour which likely mitigates direct and indirect competition with EWs. We suggest two routes to promote the coexistence of AWs and EWs in the Ethiopian highlands: local education efforts highlighting the complex role AWs play in highland ecosystems to reduce their persecution, and enforced protection of intact habitats to preserve habitat preferred by EWs.

4.
R Soc Open Sci ; 5(5): 172207, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29892409

RESUMO

Carnivore populations are declining globally due to range contraction, persecution and prey depletion. One consequence of these patterns is increased range and niche overlap with other carnivores, and thus an elevated potential for competitive exclusion. Here, we document competition between an endangered canid, the Ethiopian wolf (EW), and the newly discovered African wolf (AW) in central Ethiopia. The diet of the ecological specialist EW was dominated by rodents, whereas the AW consumed a more diverse diet also including insects and non-rodent mammals. EWs used predominantly intact habitat, whereas AWs used mostly areas disturbed by humans and their livestock. We observed 82 encounters between the two species, of which 94% were agonistic. The outcomes of agonistic encounters followed a territory-specific dominance pattern, with EWs dominating in intact habitat and AWs in human-disturbed areas. For AWs, the likelihood of winning encounters also increased with group size. Rodent species consumed by EWs were also available in the human-disturbed areas, suggesting that these areas could be suitable habitat for EWs if AWs were not present. Increasing human encroachment not only affects the prey base of EWs, but also may impact their survival by intensifying competition with sympatric AWs.

5.
Mol Phylogenet Evol ; 118: 75-87, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28963084

RESUMO

The Ethiopian highlands are the most extensive complex of mountainous habitats in Africa. The presence of the Great Rift Valley (GRV) and the striking elevational ecological gradients inhabited by recently radiated Ethiopian endemics, provide a wide spectrum of model situations for evolutionary studies. The extant species of endemic rodents, often markedly phenotypically differentiated, are expected to possess complex genetic features which evolved asa consequence of the interplay between geomorphology and past climatic changes. In this study, we used the largest available multi-locus genetic dataset of the murid genus Stenocephalemys (347 specimens from ca 40 localities across the known distributional area of all taxa) to investigate the relative importance of disruptive selection, temporary geographic isolation and introgression in their adaptive radiations in the Pleistocene. We confirmed the four main highly supported mitochondrial (mtDNA) clades that were proposed as four species in a previous pilot study: S. albipes is a sister species of S. griseicauda (both lineages are present on both sides of the GRV), while the second clade is formed by two Afro-alpine species, S. albocaudata (east of GRV) and the undescribed Stenocephalemys sp. A (west of GRV). There is a clear elevational gradient in the distribution of the Stenocephalemys taxa with two to three species present at different elevations of the same mountain range. Surprisingly, the nuclear species tree corresponded only a little to the mtDNA tree. Multispecies coalescent models based on six nuclear markers revealed the presence of six separate gene pools (i.e. candidate species), with different topology. Phylogenetic analysis, together with the geographic distribution of the genetic groups, suggests a complex reticulate evolution. We propose a scenario that involves (besides classical allopatric speciation) two cases of disruptive selection along the elevational ecological gradient, multiple crosses of GRV in dry and cold periods of the Pleistocene, followed by hybridization and mtDNA introgression on imperfect reproductive barriers. Spatial expansion of the currently most widespread "albipes" mtDNA clade was followed by population fragmentation, lineage sorting and again by hybridization and mtDNA introgression. Comparison of this genetic structure to other Ethiopian endemic taxa highlight the geographical areas of special conservation concern, where more detailed biodiversity studies should be carried out to prevent many endemic taxa from going extinct even before they are recognized.


Assuntos
Evolução Molecular , Murinae/classificação , Animais , Citocromos b/química , Citocromos b/classificação , Citocromos b/genética , DNA Mitocondrial/química , DNA Mitocondrial/isolamento & purificação , DNA Mitocondrial/metabolismo , Ecossistema , Etiópia , Haplótipos , Hibridização Genética , Cariótipo , Murinae/anatomia & histologia , Murinae/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...